
File Duplicator: An Example of Windows Services

ZBIGNIEW A. NOWACKI
Computer Engineering Department, Technical University of Lodz

The article presents a tool utility, designed by the author and termed File Duplicator, running under the
Microsoft Windows operating system. We have demonstrated that in many cases, especially related to the
automatic back-up services, this program can be found useful. One should pay attention to the fact that
File Duplicator is an example of memory-resident applications called Windows Services. We have pointed
out some differences between such residents and normal programs. A universal and reliable method for
creating and installing Windows Services has been specified.

Key Words: Windows service, Windows application, console application, disk storage, memory-resident,
operating system

1. Introduction

The principal motivation for the creation of File Duplicator was the widely understood safety
of data being preserved in disk files. In the case of malfunction or malicious attack [1], it is
good to have a copy of a lost file. The most popular method of achieving this goal is to
archive the disk storage periodically [2]. The disadvantages of this approach are that the
process may be time-consuming, and there is a possibility of loss of data that have been
updated after the last backup.

File Duplicator removes these drawbacks, for the backup process takes place in a manner
transparent to the user, and there is always a practically up-to-date copy of a selected disk file.
However, this method can be used solely for the most important files; their maximum number
depends on the size of the computer memory.

It is worth emphasizing that, in contrast to traditional archiving systems, File Duplicator does
not create backup copies at regular intervals, but it makes them only if the original file has
been changed. This novel approach can help to reduce the consumption of computing
resources such as disk storage and CPU time.

Older computer users remember the text editors or word processors [3] that after the update of
a document wrote its previous contents to the file with the extension “.BAK”. This was
convenient, but most of today’s programs do not offer this facility. Therefore, it is worth
noting that applying File Duplicator you may back up the previous contents of a chosen file as
well. This option is of importance also because if, e.g., a virus modifies the file while
retaining its name, then the current copy will be corrupted, but the prior copy will be correct.

Using the program is easy. Its executable can be downloaded from the author’s web page [4],
and run with command-line arguments discussed in Section 2. File Duplicator is able to be
started with any method known under the Microsoft Windows operating system [5], but it is
best to run it automatically at startup. This can be done by initiating the utility via the Startup
folder (see Section 3.) or, better, by installing it as a Windows Service [6, 7]. Such a solution
is a preferred technique to build the equivalent of a UNIX daemon [8].

Windows Services (cf. Section 4.) work without revealing its presence and usually remain
unnoticed by the user. Thus they are able to be treated as a component of the operating system
[9]. Their use and implementation is somewhat mysterious, mainly because of the ambiguities

and errors occurring in the descriptions that are available on the Internet. That is why Section
5. presents a universal and reliable method of installing Windows Services, and Section 6.
contains the full source code of File Duplicator. The reader can easily adapt it to their goals
and write their own Windows Service.

2. The command-line arguments of File Duplicator

Savefile.exe (the executable version of File Duplicator) requires at least one command-line
argument specifying a disk file file0. The program resides in memory [8, 10] and ensures that
anytime:

(a) There is a disk file file1 containing the exact copy of file0.

(b) There is a disk file file2 containing the prior copy of file0.

Precisely speaking, after starting Savefile.exe checks whether file0 and file1 exist. If the
former exists, but the latter does not, file0 is copied to file1. Next, the program checks every
2000 (the number may be changed in the fourth command-line argument) milliseconds
whether file0 has appeared or it has been modified. If so, then:

(i) file2 (if it exists) is deleted.

(ii) file1 (if it exists) is renamed to file2.

(iii) file0 is copied to file1.

The name of file1 may be specified in the second command-line parameter. Otherwise, it will
have the same base name as file0 with the extension “.$$$”. Similarly, file2 may be specified
in the third argument or it equals the base name of file1 plus the extension “.BAK”. The first
three parameters should be full paths unless you want to change solely the disk (typing a
single letter followed by, maybe, a colon). For instance,

Savefile d:\docs\myfile.doc e:

specifies that file1 is equal to e:\docs\myfile.$$$, and file2 - to e:\docs\myfile.bak, while
Savefile d:\docs\myfile.doc d d 1000

does not alter default names.
If you do not need the previous copy of file0, set the third parameter to a digit, e.g.,

Savefile d:\docs\myfile.doc d 0

Note that a command-line argument cannot contain spaces. Therefore, if you have a long
name [11] with spaces, use either its short counterpart [12] or the following option. If the first
character of the first parameter is not a letter, in the first three parameters it is replaced by a
space. For example,

Savefile &d:\program&files\my&file.doc d: e:\prior&file.doc

specifies that file0 is equal to d:\program files\my file.doc, and file2 - to e:\prior file.doc.
As follows from the above description, Savefile.exe backs up a single disk file. However, it is
possible to run a number of its copies with different first parameters. The only limitation is the

computer memory capacity (a single copy of the program takes about 1 MB of memory). Note
also that file0 of a copy can be equal to file2 of another. In this fashion you may obtain a chain
of consecutive copies of a very important file.

3. Installing File Duplicator in the Startup folder

As Savefile.exe requires command-line arguments, it cannot be directly located in the Startup
folder. However, you may compile an auxiliary C program [13, 14] containing [15]

#include <process.h>

#ifndef P_NOWAIT
#define P_NOWAIT _P_NOWAIT
#endif

void main()
{
spawnl (P_NOWAIT, “full path\\savefile.exe”,
 “full path\\savefile.exe”,
 “first parameter for savefile.exe”,
 “second parameter”,...,NULL);
spawnl (P_NOWAIT, “full path\\savefile.exe”, // optional
 “full path\\savefile.exe”,
 “another parameter”,NULL);
}

and its executable can be moved to the Startup folder.

4. Windows Services

Microsoft Windows Services [6, 7], earlier called NT Services, are memory-resident (i.e.,
working in the background) programs running in their own window stations that are different
from the interactive station of the logged-on user. The reader familiar with Unix-type systems
[16] may want to compare them with Unix daemons [8]. In fact, they also set up a mechanism
for being called up either periodically or by an application at a later time, and otherwise
remain idle in the background until explicitly stopped.

A window station [6] is a secure object containing a local clipboard and a group of local
desktop objects. This implies that a Windows Service cannot show any user interface (with
the exceptions described in [17]). Precisely speaking, a utility of this type is not able to input
or output anything (unless it is located in the disk storage or a method of interprocess
communication [18] is applied). Even error messages should not be raised in the user
interface, since dialog boxes will not be visible and can cause the program to stop responding.

After installing, Windows Services are able to be automatically started when the system boots
(earlier than the user logs into the computer). They run under the system account that has
more privileges and permissions than a user (even administrator) account. At any time
services can be stopped and restarted via Windows Task Manager. From the application level
this may be done with the aid of, e.g., global semaphores [19-21].

5. Installing File Duplicator as a Windows Service

To install Savefile.exe as a Windows Service you will need utilities called Instsrv.exe and
Srvany.exe. They were designed for Windows XP, but under Windows 7 and Windows Vista
they work fine as well. The programs are contained in the Windows NT Resource Kit that can
be downloaded from [22]. In this way you will obtain the Rktools.exe package. After running
it, Instsrv.exe, Srvany.exe and other files will be written to the c:\Program Files\Windows
Resource Kits\Tools folder, where c: might be replaced by another designation of the system
disk.

Now perform the following steps:

(i) At a command prompt (running as administrator under Windows 7 and Vista), type the
following command:

 <path>\Instsrv.exe SAVEFILE <path>\Srvany.exe

where <path> is the drive and directory of the utilities (i.e., most frequently the above
folder). This creates a service with the name SAVEFILE (it may be changed).

(ii) Run Registry Editor (Regedt32.exe of the System32 folder) and locate the following
subkey:

 HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\SAVEFILE

(iii) From the Edit menu select New Key and type:

Parameters<Enter>

(iv) From the Edit menu choose New String Value and type:

Application<Enter>

(v) From the Edit menu (or clicking the right mouse button at Application) select Modify... and
type:

<path>\savefile.exe command-line parameters <Enter>

where <path> is a full path to Savefile.exe, e.g.,

d:\programs\savefile.exe c:\myfile.doc d:\copies\copy1.doc <Enter>

(vi) Close Registry Editor.

Savefile.exe will run automatically with these command-line parameters when the system is
restarted. Many such services can be configured if necessary. They have to have different
names, but they might use the same full paths of Savefile.exe and Srvany.exe.

Using Instsrv.exe it is also possible to delete services, e.g.,

Instsrv.exe SAVEFILE remove

Remember that earlier it may be necessary to stop the service with the aid of Task Manager.

When replacing Savefile.exe by another application, the foregoing method enables us to run it
as a service. However, this makes sense only for some programs that precisely for this reason
are able to be called Windows Services. Similar installation instructions can be found in [23],
but they contain errors and say nothing about command-line parameters. Their use is vital
here because of the absence of the normal user interface.

6. The full source code of File Duplicator

The program has been written in the C programming language [13, 14]. Its full source code is
presented below:

// FILE DUPLICATOR
#include <windows.h>
#include <time.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <io.h>
#include <stdio.h>
#include <fcntl.h>
#include <share.h>
#include <ctype.h>
// CONSTANTS
#define BUFSIZE 50000 // the buffer size
#ifndef MAX_PATH
 #define MAX_PATH _MAX_PATH // the maximum path size
#endif
// EXTERNAL VARIABLES
char buf[BUFSIZE];
char file[3][MAX_PATH+4];
#if defined(__BORLANDC__)
 struct stati64 state;
#else
 struct _stati64 state;
#endif
time_t prior,current;
__int64 psize,csize;
int espace;
// FUNCTION PROTOTYPES
void createlong(char *file, char *arg); // create long path

void createpath(int n, const char *ext, char *arg); // create copy path
int copyfile(const char *from, const char *to); // copy files
time_t modtime(__int64 *size); // time of last modification of file[0]
void CALLBACK ResidentProc(HWND, UINT, UINT, DWORD);
// MAIN FUNCTION
int main(int argc, char *argv[])
{
if(argc<2) return 1;
createlong(file[0],argv[1]+(isalpha(espace=*argv[1]) ? espace=0 : 1));
createpath(1, “$$$”, argc>=3 ? argv[2] : NULL); // create path of copy
createpath(2, “BAK”, argc>=4 ? argv[3] : NULL); // create path of prior copy
// TIMER DEFINITION
SetTimer(NULL,1,argc>=5 ? atoi(argv[4]) : 2000,ResidentProc);
prior=modtime(&psize);
// MESSAGE LOOP
MSG event;
while(GetMessage(&event, NULL, 0, 0))
 {
 DispatchMessage(&event);
 }
return 0;
}
// CREATE LONG PATH
void createlong(char *file, char *arg)
{
if(espace)
 { // replace espace by space
 char *p=arg=strdup(arg);
 for(;;)
 {
 p=strchr(p,espace);
 if(!p) break;
 *p++=’ ‘;
 }
 }
if(!GetLongPathNameA(arg,file,MAX_PATH)) strcpy(file,arg);
if(!strchr(file,’.’)) strcat(file,”.”);
strcat(file,” “);
}
// CREATE COPY PATH
void createpath(int n, const char *ext, char *arg)
{
memcpy(file[n],file[n-1],MAX_PATH+3);
if(arg)
 {
 if(strlen(arg)<=2) file[n][0]=arg[0]; // only disk
 else
 {
 createlong(file[n],arg); // path
 return ;
 }
 }
strcpy(strrchr(file[n],’.’)+1,ext);
}
// COPYING FILES
int copyfile(const char *from, const char *to)
{
int i;
int infile=sopen(from, O_RDONLY | O_BINARY, SH_DENYNO);
if (infile<0) return 0;

int outfile=sopen(to, O_CREAT | O_RDWR | O_BINARY | O_TRUNC,
 SH_DENYWR, S_IREAD | S_IWRITE);
if (outfile<0) return 0;
for(;;)
 {
 i=read(infile,buf,BUFSIZE);
 if(!i) break;
 write(outfile,buf,i);
 }
close(outfile);
close(infile);
return 1;
}
// TIME OF LAST MODIFICATION OF FILE[0]
time_t modtime(__int64 *size)]
{
if(!_stati64(file[0], &state))
 {
 if(size) *size=state.st_size;
 return state.st_mtime;
 }
if(size) *size=-1;
return 0;
}
// TIMER PROCEDURE
void CALLBACK ResidentProc(HWND, UINT, UINT, DWORD)
{
static int work;
if(work) return ;
work=1;
if(access(file[1],0)<0) copyfile(file[0],file[1]);
else
 {
 current=modtime(&csize);
 if(current && (current != prior || csize != psize))
 {
 if(isalpha(*file[2]))
 {
 unlink(file[2]);
 rename(file[1],file[2]);
 }
 copyfile(file[0],file[1]);
 prior=current;
 psize=csize;
 }
 }
work=0;
}

Let us discuss some aspects of this code. As Windows Services are designed to work without
a graphical user interface, they can be console applications [24]. Therefore, although File
Duplicator includes the windows.h file, it contains the main function instead of WinMain [25,
26].

Some tasks of services require a periodic testing of certain conditions and undertaking an
action only when they are satisfied. For instance, File Duplicator has to examine if the file
specified in the first parameter has appeared or has been modified. To this end, the SetTimer
function [27] in main defines a so-called timer. As a result, the ResidentProc function will be

invoked every 2000 (by default) milliseconds. Note that the procedure of copying may be
long-term, so the use of the work variable in the timer procedure is essential.

At the end of the main function one can find the loop testing events (manifested in coming
messages) [28, 29]. In contrast to a normal loop, this sequence of instructions does not
overburden the system even if it is being performed for a long time and by many programs
simultaneously. Note that the message loop differs slightly from the analogous one in
Windows applications [30-32]. For in the latter [26, 33] the call of DispatchMessage [34] is
preceded by that of TranslateMessage [35] responsible for providing ASCII codes of
characters entered from the keyboard. But services do not allocate the entry of this device, so
TranslateMessage can be omitted here.

7. Conclusion

In the paper we present an easy to use and helpful tool utility, called File Duplicator, for
creating up-to-date copies of important disk files. Its purpose, command-line arguments and
installation methods have been discussed in detail. The full source code of File Duplicator has
been also included.

It should be emphasized that File Duplicator is an example of applications called Windows
Services. Hence the instructions incorporated in the work may be applied to run any program
as a Windows Service. And the whole article can be regarded as a guide to writing such
memory-resident utilities by those who know the C/C++ language [13, 14, 36] even if they
have no experience in building so-called Windows applications [30-32].

References

1. Zimoch M. Privacy and Security on the Internet. Master’s thesis supervised by Z. A.
Nowacki, Lodz Technical University, 2009.

2. Back up - Guide to backing up the important files on your hard drive.
http://www.helpwithpcs.com/maintenance/back-up-backing-up-guide.htm
[2 January 2012].
3. Ignaczak M. The Comparative Analysis of Computer Text Processing Systems. Master’s
thesis supervised by Z. A. Nowacki, Lodz Technical University, 2008.
4. Modern TSR programs by Zbigniew Andrzej Nowacki.
http://www.nova.pc.pl/software.htm [2 January 2012].
5. Kominiak L. The Genesis, Evolution and Structure of Microsoft Windows Operating
Systems. Master’s thesis supervised by Z. A. Nowacki, Lodz Technical University, 2007.

6. Introduction to Windows Service Applications.
http://msdn.microsoft.com/en-us/library/d56de412(VS.80).aspx [2 January 2012].

7. Services.
http://msdn.microsoft.com/en-us/library/ms685141.aspx [2 January 2012].
8. Writing resident programs under Linux.
http://rudy.mif.pg.gda.pl/~bogdro/linux/tsr_tut_linux_en.html [2 January 2012].
9. Stallings W. Operating Systems: Internals and Design Principles. Prentice Hall, New
Jersey, 2009.

10. Tomczyk M. The Methods of Creating Resident Programs in the DOS and Windows
Systems. Master’s thesis supervised by Z. A. Nowacki, Lodz Technical University, 2001.

11. Naming Files, Paths, and Namespaces.
http://msdn.microsoft.com/en-us/library/aa365247(v=vs.85).aspx [2 January 2012].
12. GetShortPathName Function.
http://msdn.microsoft.com/en-us/library/aa364989(v=vs.85).aspx [2 January 2012].
13. Kernighan B. W., Ritchie D. M. The C Programming Language. Second Edition. Prentice
Hall, New Jersey, 1988.

14. C Language Tutorial.
http://einstein.drexel.edu/courses/Comp_Phys/General/C_basics/ [2 January 2012].
15. spawn functions.
http://www.users.pjwstk.edu.pl/~jms/qnx/help/watcom/clibref/src/spawn.html
[2 January 2012].
16. Bukowiecki M. The Genesis, Development and Practical Applications of the Linux
System. Master’s thesis supervised by Z. A. Nowacki, Lodz Technical University, 2007.

17. Interactive Services.
http://msdn.microsoft.com/en-us/library/ms683502(v=VS.85).aspx [2 January 2012].

http://msdn.microsoft.com/en-us/library/ms683502(v=VS.85).aspx
http://www.users.pjwstk.edu.pl/~jms/qnx/help/watcom/clibref/src/spawn.html
http://einstein.drexel.edu/courses/Comp_Phys/General/C_basics/
http://msdn.microsoft.com/en-us/library/aa364989(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/aa365247(v=vs.85).aspx
http://rudy.mif.pg.gda.pl/~bogdro/linux/tsr_tut_linux_en.html
http://msdn.microsoft.com/en-us/library/ms685141.aspx
http://msdn.microsoft.com/en-us/library/d56de412(VS.80).aspx
http://www.nova.pc.pl/software.htm
http://www.helpwithpcs.com/maintenance/back-up-backing-up-guide.htm

18. Interprocess Communications.
http://msdn.microsoft.com/en-us/library/windows/desktop/aa365574(v=vs.85).aspx
[2 January 2012].
19. Szurgot R. Parallel Programming in Windows. Master’s thesis supervised by Z. A.
Nowacki, Lodz Technical University, 2009.

20. Multiple Threads.
http://msdn.microsoft.com/en-us/library/ms684254(v=vs.85).aspx [2 January 2012].
21. Concurrent Processes: Basic Issues.
http://cnx.org/content/m12312/latest/ [2 January 2012].

22. Windows Server 2003 Resource Kit Tools.
http://www.microsoft.com/download/en/confirmation.aspx?id=17657 [2 January 2012].
23. How To Create a User-Defined Service.
http://support.microsoft.com/default.aspx?scid=kb;en-us;137890 [2 January 2012].
24. Running Console Applications from Windows.
http://www.hermetic.ch/rundos.htm [2 January 2012].
25. WinMain Entry Point.
http://msdn.microsoft.com/en-us/library/ms633559(v=vs.85).aspx [2 January 2012].
26. WinMain - application entry point.
http://www.toymaker.info/Games/html/winmain.html [2 January 2012].
27. SetTimer Function.
http://msdn.microsoft.com/en-us/library/ms644906(v=vs.85).aspx [2 January 2012].
28. MSG Structure.
http://msdn.microsoft.com/en-us/library/ms644958(v=vs.85).aspx [2 January 2012].
29. GetMessage Function.
http://msdn.microsoft.com/en-us/library/ms644936(v=vs.85).aspx [2 January 2012].
30. Petzold C. Programming Windows. Microsoft Press, 1998.

31. Richter J. Programming Applications for Microsoft Window. Microsoft Press, 1999.

32. Prosise J. Programming Windows with MFC. Microsoft Press, 1999.

33. Creating a Message Loop.
http://msdn.microsoft.com/en-us/library/ms644928(v=vs.85).aspx#creating_loop
[2 January 2012].
34. DispatchMessage Function.
http://msdn.microsoft.com/en-us/library/ms644934(v=vs.85).aspx [2 January 2012].
35. TranslateMessage Function.
http://msdn.microsoft.com/en-us/library/ms644955(v=vs.85).aspx [2 January 2012].
36. Stroustrup B. The C++ Programming Language. Third Edition. Addison Wesley, New
Jersey, 1997.

http://msdn.microsoft.com/en-us/library/ms644955(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/ms644934(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/ms644928(v=vs.85).aspx#creating_loop
http://msdn.microsoft.com/en-us/library/ms644936(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/ms644958(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/ms644906(v=vs.85).aspx
http://www.toymaker.info/Games/html/winmain.html
http://msdn.microsoft.com/en-us/library/ms633559(v=vs.85).aspx
http://www.hermetic.ch/rundos.htm
http://support.microsoft.com/default.aspx?scid=kb;en-us;137890
http://www.microsoft.com/download/en/confirmation.aspx?id=17657
http://cnx.org/content/m12312/latest/
http://msdn.microsoft.com/en-us/library/ms684254(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa365574(v=vs.85).aspx

	2. The command-line arguments of File Duplicator
	6. The full source code of File Duplicator

