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The work seeks to clarify the foundations of quantum physics. We present
its fully objective and mathematically consistent interpretation. The most fun-
damental concept of the theory is of a quantum event. It is defined in a math-
ematically precise form and consists of two portions: relativistic and quantum.
We include also a notion related to the wavefunction, joined to quantum events
by the collapse alias reduction relation. Another considered relation is that of
quantum entanglement. One of the axioms of the theory, termed the Planck-
Einstein law, enables us to explain the nature of quantum probabilities via ‘the
quantum law of large numbers’. A result called the Born law allows one to sub-
stitute some quantum events for particles. There is also formulated the extended
superposition principle. The presented theory of measurement contains no para-
doxes, and it can be used to depict the whole universe, and not only the response
of the apparatus in the physical laboratory.
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1. INTRODUCTION

The conceptual foundation of modern quantum physics rests on the fundamental
rôle of the measuring process as being responsible for the non-classical behavior
of microscopic objects. As every measurement depends on a subjective decision
made by the experimenter, and any macroscopic body consists of elementary
particles, it seems(1) that quantum mechanics has to deny the objective reality
of the physical world and associate it rather with the ‘knowledge’ of a conscious
observer. This leads, of course, to various contradictions, especially in the area
of cosmological researches. Furthermore, as Fritsche and Haugk rightly expose
in a recent paper(2), ”there is no cogent interconnection between the influence of
observation on a system and the mapping of its ‘observables’ on Hermitian oper-
ators, which constitutes the standard procedure in setting up the mathematical
framework of quantum mechanics.”

There are also problems concerning the structure of the theory. Schrödinger’s
time-dependent wave equation is an exact recipe for determining how the wave-
function varies with time for a given physical system. According to the equa-
tion, the wavefunction evolves in a smooth and precisely determinate fashion.
On the other hand, a measurement transforms abruptly and discontinuously
the wavefunction into a random eigenstate. The Schrödinger equation applies
between measurements, while their execution itself cannot be depicted by the
equation; it is somehow a thing apart. This appears unsatisfactory, inasmuch
as a measurement is a physical process as well.

The solution of the issues was already searched for by Schrödinger himself.
Initially(3), he wished to treat the wavefunction itself as a complete picture; he
attempted to replace particles by wavepackets. Unfortunately, the latter diffuse.
Also he encountered a problem(4) with his cat because the wavefunction showed
that she should be dead and alive at the same time. Later(5) he did have to
admit that the definiteness of the world of experience and the indefiniteness of
the wavefunction seemed to be irreconcilable. Hence either the wave equation
is not correct or it is not everything.

The paper suggests a way to improve the situation. Our central idea consists
in assuming that the wavefunction mechanism is right and irreplaceable, but it
should not be treated as the sole component of Nature. What could be of even
greater importance than the wavefunction itself? There is only one possible
answer: that is what arises during its collapse, i.e., a quantum event. This term
is sometimes(6–12) used, but it has been never treated as the most fundamental
concept and defined in a mathematically precise form. For example, in Ref.
10 the phrase ‘quantum event’ appears solely in the titles of the article and
sections, while in Ref. 12 it can be found merely in the name of the theory2.

In the work, (1) of Section 2. gives the most important definition. The
obtained notion is an extension of the common four-dimensional event and con-
sists of two portions: relativistic and quantum. We shall see that the current
interpretation is just a minimal extension of quantum theory that preserves its
mathematical apparatus3 and accounts for quantum events. Thereby we feel
entitled to call the approach ‘quantum event theory’ abbreviated as QET.

Since we have already quantum events, there should also be quantum world-
lines. They do exist arising from quantum events via equivalence and ordering
(in time) relations. Quantum world-lines are also called virtual paths; the term

2Recently I have been informed that a theory known as ‘event enhanced quantum theory’
(EEQT) is to be suddenly (without any essential change in its content) renamed ‘theory of

quantum events’(12) abbreviated as EQT (probably reading the words in reverse order). In my
opinion the authors of EEQT alias EQT simply deal with usual events in a five-dimensional

space-time(11), so the former name seems to be better.
3We follow the line of thinking contained in Stapp’s statement(13) that ‘nature is best

understood as being built around knowings that enjoy the mathematical properties ascribed
to them by quantum theory’.
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‘virtual’ signifying here that, in contradistinction to special relativity, no par-
ticles move along them. In particular, virtual paths have nothing in common
with virtual particles. Applying the world-lines, we are in a position to construct
wavefunctions or even state functions (with field variables instead of particles’
locations). As the collapse of a state function is described by a set of simultane-
ous quantum events, one sees that everything needed can be obtained by using
the same elementary components.

Many physical theories are able to be characterized by their fundamental
differential equations. For instance, nonrelativistic wave mechanics is frequently
presented as the theory of the Schrödinger equation. This is possible also with
regard to our approach: the ordinary differential equation (2) is assumed to
be fulfilled by all quantum world-lines. It is a far-reaching generalization of the
tool devised by the Austrian physicist, where an abstract Hilbert space has been
substituted for the set of complex numbers, and an operator of the space — for
the hamiltonian. Consequently, (2) embraces without exaggeration the whole
quantum physics.

Although virtual paths mathematically consist of equivalence classes of quan-
tum events, the physical statuses of both the notions must differ. We postulate
the existence of two primitive objects forming the physical world: quantum
events (generalizing, in some cases, particles) and quantum world-lines. In this
way QET becomes very similar to the two main branches of mathematics: geom-
etry and set theory. Quantum events can be compared with points or elements,
virtual paths — with lines or sets, while wavefunctions and, more generally,
state functions — with hyperplanes or families of sets (cf. Fig. 1.). The mem-
bership relation ∈ is also reflected here: the symbol denotes a relation joining
quantum events to paths, termed the collapse or reduction relation. (Note that
all the relations of the third column of Fig. 1. are fundamental and local.) On
the other hand, the relation ! of entangled quantum events or world-lines
can be compared with the one of equipotent sets or parallel hyperplanes. (The
relations of the sixth column are nonlocal and may involve objects of the same
type, but they lead to the most interesting problems in each theory.) Of course,
the properties of the objects and relationships between them are determined
by axioms. They have been chosen to ensure the consistency, plausibility, and
richness of each theory. And we believe that among various physical theories
should be one of this type.

Geometry

Set theory

Quantum
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Fig. 1. The comparison of QET with other theories.

The idea of geometrization of physics is widely known(14, 15). However, even
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Wheeler — famous for the celebrated slogan: ”Physics is geometry” — postu-
lated eventually(16) that there should exist an unknown structure deeper than
geometry, explaining also quantum phenomena. Our approach firmly supports
this view. QET does not need geometry because it itself is a sort of ‘geometry’.
This permits us to answer Wheeler’s recent question: ”How come the quan-
tum?” It is, in our opinion, the quantum event of the theory, the least object
existing physically.

It is worthwhile to point out that we reject, like did Schrödinger, any addi-
tional — hidden or not — variables(17–22). We postulate the objective existence
of quantum events and virtual paths, and the latter do yield wavefunctions
without extra variables. Consequently, the theory represents the same indeter-
minacy as conventional quantum mechanics. But having quantum events we
are in a position to clarify where quantum probabilities stem from. Section 6.
also accounts for the reason why some quantum events will be able to replace
particles. Note that quantum events cannot diffuse. They do not possess trajec-
tories, but nobody has ever seen trajectories of particles either, even in the track
chamber. In Section 7. we explain the only — according to Feynman — mystery
of quantum physics, i.e., the two-slit experiment. The paradox of Schrödinger’s
cat is unraveled in Section 10. without introducing any new constants of Nature,
and a comparison with the idea(23) of Ghirardi, Rimini and Weber as well as
the stochastic quantization(2) initiated by Nelson(24, 25) is presented in Section
11.

One might say that the theory was ordered by Bell. It offers a positive
answer to his questions(26, p. 118): ”And does not any analysis of measurement
require concepts more fundamental than measurement? And should not the
fundamental theory be about these more fundamental concepts?” Following
Bell’s suggestions(26, p. 126, 27), the concepts of ‘measurement’, or ‘observation’,
or ‘experiment’, do not occur at the fundamental level of our approach. Instead,
we consider some less ambiguous objects: quantum events and virtual paths
having the status of Bell’s ‘beables’(26, p. 174). QET has been formulated for very
small systems: the pairs of the collapse relation. Thereby our presentation can
be mathematically rigorous, although we do not presuppose an acquaintance
with any sophisticated mathematical theory. The paper is closely connected
with experiments and it attempts to describe the physical reality in a direct
way, using simply a very effective method verified previously in mathematics.

Any genuine theory of Nature must be obviously Lorentz invariant. QET
satisfies this stipulation, but it requires a larger number of axioms. Thus the
sole purpose of the work is to include nonrelativistic quantum mechanics in the
theory. In this context it is worth noting that, despite all appearances, the
approach does not radically differ from the Copenhagen interpretation of the
measurement process. The latter is extremely pragmatic. It distinguishes be-
tween quantum systems and classical measuring instruments. An initial event at
the quantum level triggers the classical apparatus into giving a reading; some-
where along the chain of events the outcome of the measurement becomes fixed,
that is, the wavefunction is reduced. This does not solve the problem of mea-
surement, but says, in effect, not to worry about it. This is probably the view
of most experimenters.

According to our interpretation, all the events are quantum, they lie on vir-
tual paths, and the former are joined to the latter by the reduction relation. If
you know all the events, you may utilize this fact in proofs and calculations.
But otherwise, similarly to the Copenhagen interpretation, you should not worry
about it. In many cases it is sufficient, at least at present, to know the crucial
event (or a family of simultaneous events if the wavefunction has many spatial
arguments). The event does not need to be the final one in the experiment;
most frequently it initializes a chain of quantum events ending in a definite
position of the pointer. Thereby, the chain plays the rôle of the classical mea-
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suring instrument. Thus our approach can be accepted by practicing physicists,
even starting from the very moment. And we shall see that our interpretation
enjoys the virtues of the Copenhagen one, the disadvantages of the latter being
removed.

2. QUANTUM EVENTS

The notion of a quantum event is an extension of the concept of a common
four-dimensional event. By the former we mean any

q
def= (t, r,Φ, A, ψ, ϕ), (1)

where

� t∈R is the time of q,

� r∈ 3D is the location of q,

� Φ is a Hilbert space over the field of complex numbers, called the state
space of q,

� A, termed the operator of q, is a linear operator defined on a topologically
dense subset of Φ,

� ψ ∈Φ is the pure or evolving state of q,

� ϕ∈Φ, called the eigenstate or reduced state of q, is an eigenvector of A,
corresponding to a real eigenvalue, such that (ψ|ϕ) 6=0.

The definition is long enough, but it can be easily memorized. A quantum
event contains two portions: the first one consisting of two small Latin letters is
relativistic, whereas the second one containing four Greek letters is quantum.4

Let us add that for some quantum events Φ could be a rigged (bristling) Hilbert
space, and A could be nonlinear, but in the paper we do not deal with those
cases.

Kopczyński and Trautman write in Ref. 15: ”What is space-time? It is a
set of elements called events. In keeping with what was said earlier, we must
define the relationship between the concepts which occur in a model and that
which we observe in reality. In particular, we must say what the mathematical
concept of a point-event corresponds to. We obtain it by abstraction from what
is called an event in everyday language.” We shall see that a similar thing holds
in the case of quantum events provided ‘everyday language’ is replaced by ‘the
language of quantum physicists’. In this model each reduction of a state function
is represented by a finite collection of simultaneous quantum events. Of course,
they can also — analogously to four-dimensional events — take place without
the participation of humans.

It should be pointed out that a quantum event (in agreement with the spirit
of quantum physics) describes not only what is measured but what measures
as well. More precisely speaking, the relativistic part of q is connected with a
detector. In many cases (1) can be interpreted as follows: A detector situated
at the time t and location r recorded the reduction of the pure state ψ of Φ to
the eigenvector ϕ of A.

In a relativistic theory it must be admitted that different observers can as-
sign to the same, in fact, quantum event distinct mathematical representations.

4If the location is presented via three coordinates, then the eight components and two
halves of a quantum event can be compared with the eight bits and two hexadecimal digits
of a byte. It may be also of an interest that the phrase composed of the first four letters of
(1) sounds like a Polish word connected with time, the primary reason for creating relativistic
physics.
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Thereby we shall assume that there is a class of primitive objects (i.e., whose
form is not defined) called quantum events as well. Saying ‘quantum event’, we
shall have either a primitive object or its representation (1) in mind; the current
meaning will be determined by the context.

One could have doubts about the consistency of (1) with the uncertainty
principle since it contains r together with an arbitrary (e.g., momentum) op-
erator at the same time. The simplest answer is: every observable enjoys an
apparatus measuring it(42, p. 37), so r is, for instance, the location of the mo-
mentum detector, and not of particles whose momentum is being measured.

Concluding the section we consider the question how to call the class of all
representations of quantum events. As they generalize the readings of measuring
apparatuses, we think that the real world is the best and simplest term.

3. QUANTUM WORLD-LINES ALIAS VIRTUAL PATHS

Suppose that the experimenter makes a decision to perform an experiment.
She may choose an operator and wavefunction, but she is not able, due to
indeterminacy, to predict the obtained eigenstate. This suggests the following
definition. By quantum decision we mean the portion

(t, r,Φ, A, ψ),

of a quantum event q. The set of all quantum decisions will be called the mental
world. By quantum world-line or virtual path or, most shortly, path we mean a
curve in the mental world represented by (t,p(t),Φ,A(t),ψ(t)) or, briefly,

p
def= (p,Φ, A, ψ),

such that p is twice differentiable, ψ is differentiable with a continuous deriva-
tive, and the basic differential equation

A(t)ψ(t) = ih̄
dψ(t)

dt
, (2)

is satisfied at every t. One of the initial reasons it has been chosen for the the-
ory was that (2) is analogous to the time-dependent Schrödinger equation. Of
course, ‘analogous’ cannot be replaced here by ‘equal’ even if the wavefunction
had no spatial arguments. In fact, the wavefunction is simultaneously a vector
of a Hilbert space in which the hamiltonian acts and a complex function differ-
entiated with respect to time. Thus both the sides of the Schrödinger equation
transform differently when time is not absolute(28). On the other hand, (2) is
more mathematically mature: we need not consider what the vectors of the ab-
stract Hilbert space Φ are. From the physical point of view it is important that
the relativistic transformation of (2) can be easily found. In Section 5. we shall
see that some essential properties of (2) enable one to include the wavefunction
and much more in QET.

Analogously to the case of quantum events, we shall assume that there is
a class of primitive objects called virtual paths or quantum world-lines as well.
The class of their representations will be called the virtual world, while the class
of all primitive objects of both the types will be said to be the physical world.

One could wonder whether our assumption on the physical existence of vir-
tual paths is not too speculative. To answer let us recall that many quantum
physicists believe in the real existence of the wavefunction (in R× (3D)n if it
has n spatial arguments). However, to build a house you need bricks, and the
theory just provides bricks. We shall see that using virtual paths (lying always
in R× 3D) one can construct any wavefunction or even state function with field
variables rather than particles’ positions. We think that such an approach is
more methodologically correct.
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Although virtual paths exist physically, they are not as fundamental as quan-
tum events. Indeed, using the representations of the former one cannot obtain
the representations of the latter. In other words, having solely the wavefunction
it is impossible to get its reduction. This, among other things, caused the failure
of Schrödinger’s attempts mentioned in Section 1.

Let p be a virtual path. For every quantum event q of the form

(t,p(t),Φ, A(t), ψ(t), ϕ),

both p and q being the mathematical representations of some elements of the
physical world, we shall write

p q,

and say that q is controlled by p or that p collapses or is reduced or reduces to
q. The relation is the principal mechanism joining quantum events with paths.

4. THE FUNDAMENTAL STRUCTURE OF NATURE

By an observer or frame or system of reference O we mean a one-to-one mapping
of a subset of the physical world to the set of mathematical representations
defined above. If x∈ imO, where x is a quantum event or virtual path, and
imO denotes the image of the mapping, then we say that O sees, experiences
or observes x. The set of all quantum events (virtual paths) observed by O is
termed the real (virtual) world of O.

The fundamental structure of Nature by QET is illustrated in Fig. 2. The
heart and soul of the theory is the loop joining the real, mental, and virtual
worlds. The process is fed by the physical world, while the waste is thrown out
to the space-time.

Physical

World:

primitive
objects

-

-

�

Real World:

quantum events
(t, r,Φ, A, ψ, ϕ)

-...................

......
......

......
......

......
......

....3

Virtual World:

virtual paths
(t,p(t),Φ, A(t), ψ(t))

)
(
?

Mental World:

quantum decisions
(t, r,Φ, A, ψ)

?

..............

Space-Time:

events (t, r)

- observer mapping
-∼ collapse relation
- world-line creation
-.... equivalence relation

Fig. 2. The basic structure of Nature by QET.

We do not postulate that every element of the physical world is seen in at
least one frame, but this may be assumed in practice. In fact, otherwise we
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would not know even whether it is a path or event. Thus such an element
would be irrelevant.

5. QUANTUM ENTANGLEMENT AND COLLAPSE

It should be emphasized that virtual paths have nothing in common with the
motion of any particles. We shall see, in fact, that quantum world-lines with
the speed 0 suffice to include nonrelativistic quantum mechanics in the theory.
As this is the goal of the paper, we shall assume in the sequel that every path
has a constant location. Thereby we shall not consider here transformations
between observers.

Quantum events q and q0 or world-lines p and p0 are called entangled if
Φ =Φ0. All the other definitions of the paragraph concern entangled events
and paths. We say that the events commute if so do their operators (i.e., of
course, their domains are equal and AA0 =A0A). The events as well as their
operators are said to be compatible if they commute and the eigenvectors with
real eigenvalues of the operators coincide. They are called incompatible if A
and A0 do not commute. The paths are bound if A(t) and A0(t) commute for
every t, and ψ(t) =ψ0(t) for some t, while the events — if they are controlled
by bound paths at the same time. Finally, the events are said to be maximally
entangled if they have the same reduced state, and partially entangled — oth-
erwise. The entanglement relation of paths and events will be denoted by !;
the superscripts ‘cmm’, ‘com’, ‘bnd’, and ‘max’ may be added.

The first of three axioms enabling us to embed standard quantum mechanics
in the theory is

(i) (Controllability.)

If O experiences a quantum event q, then under O the following conditions
are satisfied:

� There is a unique p such that p q.

� If p q, p bnd
! p∼, then there is q∼ such that p∼ q∼ and q bnd

! q∼.

� If q0
com
! q, t0≤ t, and no event incompatible with q0 or q is in the

time interval (t0,t), then q0
max
! q.

We shall see that entangled quantum events arise during the reduction of the
same state function. Similarly, in this model two reductions of entangled paths
are interpreted as two measurements of the same system. Thus the third law
of (i) states that if the experimenter measures, for example, spin in the same
direction, and no other measurements in distinct directions have been done in
the meantime, then she will get the same result.

If two measurements of compatible observables performed on a quantum
system are separated by a longer period of time, then obtained results may
be different. (This process, termed decoherence, will not be studied here in
more detail.) It does not contradict (i) because in the model quantum events
exist objectively. Thus Nature herself can provide (using, e.g., emitted photons)
incompatible events distorting the second measurement. However, (i) implies
also that no quantum world-line collapses to two distinct events at the same
time. This can be interpreted as ensuring that an ‘immediate’ repetition of a
measurement gives the same result with certainty(29, p. 67).

Now we show that the approach will be able to be applied whenever there
is a self-adjoint operator dependent, maybe, on some parameters and enjoying
eigenvalues connected, in any way, with the results of experiments. (We think
that this requirement is fulfilled by any phenomenon that could be termed
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‘quantum’.) The next definition corresponds to the one commonly used, al-
though some details can differ (our framework is more general). A vector Ψ of
a Hilbert space Φ is said to be state eigenfunction if there is an operator func-
tion A(t,x1. . . ,xn), termed for brevity the operator A, having Hermitian values
defined on topologically dense subsets of Φ and such that Ψ is an eigenvector
of A(t,x1. . . ,xn) for at least one set of the arguments. In the section we assume
that its eigenvalue does not depend on time, i.e., the first argument of A (but
A itself may vary in time). The variables x1. . . ,xn may be points of arbitrary
metric spaces X1,. . . ,Xn, e.g., discrete spaces, Hilbert spaces, or manifolds, but
there has to be k satisfying 1≤ k≤n and such that X1,. . . ,Xk are equal to 3D
with their vectors treated as locations, while Xk+1,. . . ,Xn are not. Thus the
second argument is always spatial, although A may not depend, in fact, on x1.
We extend A in this way because any physical quantity has to be measured by
a detector which is at a definite time and location. The arguments xk+1,. . . ,xn

can be spins, colors, momenta, etc.
A referee of the paper thought that the extending of A contradicts the un-

certainty principle. In reality, it is a mathematical trick which can be always
done. On the other hand, we must remember that the time and location of the
detector (occurring in our definition of a quantum event) cannot be, in general,
identified with the time and position of the quantum object whose parame-
ters are measured. We see that mathematics here agrees with physics, and the
uncertainty principle is not violated in any manner.

A linear combination (see (6) below) of state eigenfunctions of A (with at
least one common set of the arguments) is called state function. If Ψ is a function
of time and spatial arguments, and it takes its values in a Hilbert space, then
it is termed a wavefunction. Of course, every state eigenfunction Ψ of A fulfills
an equation

AΨ = BΨ, (3)

where B depends solely on the eigenvalue of Ψ. B can be often defined in
such a way that it is independent even of eigenvalues, and (3) holds also for
state functions not being eigenfunctions. A wealth of experience teaches us(30)

that the continuous change of state of an isolated physical system frequently
proceeds according to (3). In particular, the Schrödinger, Dirac, and Klein-
Gordon equations are of the form.

We show that there exists a one-to-one correspondence between state func-
tions and some families of virtual paths. One may assume, without loss of gen-
erality, that there is a homeomorphic embedding η:X1× . . . ×Xn→Ω, where
Ω is a Hilbert space, such that for some normalized ω0 of Ω

(ω0| η(x1, . . . , xn)) = 1, (4)

whatever x1,. . . ,xn are. Define an operator A• on Φ×Ω by

A•(ϕ, ω) = (Aϕ, iω). (5)

Suppose that

Ψ =
∫
c(ξ)Ψ(ξ)dξ + c1Ψ1 + c2Ψ2 + . . . , (6)

where Ψ(ξ), Ψ1, Ψ2,. . . are normalized eigenfunctions belonging respectively to
eigenvalues ξ, ξ1, ξ2,. . . of operators A(t,x1,. . . ,xn) with (x1,. . . ,xn) lying in a
nonempty subset X of X1× . . . ×Xn, and c(ξ), c1, c2,. . . are complex numbers.
By Ψ• we denote the family of all virtual paths

(p,Φ × Ω, A•(., x1, . . . , xn), ψ),

such that (x1,. . . ,xn)∈X , for some j satisfying 1≤ j≤ k we have for every t
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p(t) = xj ,

and

ψ(t) = (Ψ[t], η(x1, . . . , xn)et/h̄),

where

Ψ[t] =
∫
c(ξ)e−i(ξ/h̄)tΨ(ξ)dξ +

∑
l

cle−i(ξl/h̄)tΨl.

Ψ• uniquely determines Ψ (at the time 0), and if we have a family of virtual
paths satisfying the conditions for some Ψ of Φ, then Ψ is a state function. Thus
Ψ• will be termed the quantum system or phenomenon with the state function
Ψ.

We shall see that the paths of Ψ• collapse in a way corroborated by ex-
perience. Thereby QET embraces all phenomena that can be described by a
sort of wavefunction or even state function; it is enough to have a self-adjoint
operator. Therefore, computational methods elaborated for calculating wave-
functions belong to QET. This involves, in particular, Feynman’s path integral
approach(31).

Now suppose that I is a Hilbert space isomorphism defined on Φ×Ω, and
Ψ•• is the family of all paths of the form

(p, I(Φ × Ω), IA•I−1, Iψ), (7)

where (p,Φ×Ω,A•,ψ) belongs to Ψ•. We shall see that there is no way to
distinguish experimentally between Ψ• and Ψ••; having the latter and I one
obtains a state function of A as well. Thus Ψ•• will be also termed the quantum
system.

Applying the theory to describe reality we assume that if experiments with
the use of an state function Ψ yield correct results, then Nature contains the
quantum phenomenon Ψ•, just with the accuracy up to an isomorphism, i.e., in
fact, Ψ••. However, for convenience we shall, as a rule, work with the former.

The paths of Ψ• are entangled. Suppose that one of them, say, p• collapses
to an event

q
√

= (t, xj ,Φ× Ω, A•(t, x1, . . . , xn), (ψ1, ω1), (ϕ, ω2)),

where (ψ1, ω1) = (Ψ[t], η(x1, . . . , xn)et/h̄). According to the second law of (i),
paths bound with p• (i.e., in this case, differing solely in location) reduce im-
mediately (at t) to at most (exactly if Ψ is a wavefunction antisymmetric with
respect to spatial arguments) k−1 bound events at distinct locations. Just this
process is termed, in this theory, the reduction of Ψ or Ψ• at t (and we say that
q
√

also belongs to Ψ•). This demonstrates that a measurement somewhere can
cause an immediate collapse everywhere.

By virtue of the third law with t0 = t, the paths of Ψ• bound with p• reduce
to the events maximally entangled with q

√
. Their common eigenstate is deter-

mined by ϕ, since by (5) ω2 must vanish. Thus we can say that the phenomenon
collapses to ϕ instead of (ϕ,0). This does not change, of course, corresponding
eigenvalues. In the sequel we shall use also the fact that the modulus of the
product of the states of q

√
equals

|(ψ1|ϕ)| = |c(ξ)| ‖ϕ‖ , (8)

where ξ is the eigenvalue of ϕ.
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6. THE NATURE OF QUANTUM PROBABILITIES

We shall say that two quantum events or world-lines are isomorphic if their
quantum portions are equal with the accuracy up to an isomorphism of Hilbert
spaces (cf. (7)). A subset U of R× 3D is termed representative if it is the
Cartesian product of two sets with nonempty connected interiors, at least one
of them being unbounded. By test cover we mean any sequence {Bk} of bounded
subsets of R× 3D such that their union is representative.

The next axiom involves the most important problems of quantum mechan-
ics.

(ii) (Observability.)

The real world of an observer O satisfies the following conditions:

� (Planck-Einstein law.) The number of quantum events occurring in
a bounded region of R× 3D is finite.

� (Quantum law of large numbers.) For every test cover {Bk} and
q, q1 ∈ imO such that Φ and Φ1 are isomorphic, while A and A1 are
equal with the accuracy up to the isomorphism, the following limit
exists and

lim
k→∞

#{q ∈ imO : (t, r) ∈ Bk}
#{q1 ∈ imO : (t1, r1) ∈ Bk}

=
∣∣∣∣ β(ψ) ‖ϕ1‖ (ψ|ϕ)
β(ψ1) ‖ϕ‖ (ψ1|ϕ1)

∣∣∣∣2 , (9)

where q and q1 within brace brackets are any events isomorphic to
the given ones respectively, and β is a nonnegative mapping of Φ,
invariant with respect to isomorphisms and dependent on A.

If a point-size source emits radiation at a time t0, then up to t> t0 there are
finitely many quantum events representing the quanta of the radiation. This
fact is at odds with the classical theory assuming that at t the radiation has the
shape of a sphere or, at least, the points at which the energy is form a continuum.
The new viewpoint was initiated by Planck(32) and developed by Einstein(33),
which justifies the caption of the first clause. In the paper it enables us to use the
symbol # in (ii), but the Planck-Einstein law has also a more universal meaning.
For example, it implies that the physical reality has a discrete character. Thus
the law generalizes the fact that the experimenter can perform solely a finite
number of measurements during a finite time interval. Furthermore, if we agree
that computers can utilize solely quantum events, then the Planck-Einstein law
implies the Church-Turing thesis(34, cf. 35). However, if it were possible to build
digital machines (they could be termed vacuum computers) acting on virtual
paths without their reduction, then effectively calculable functions not being
Turing computable could exist.

There are two most important cases of the quantum law of large numbers.
Putting ψ= Iψ1 we get that for every quantum events q, q1 ∈ imO having iso-
morphic state spaces, and operators and pure states transformed by the isomor-
phism, the following limit exists and

lim
k→∞

#{q ∈ imO : t2 + r2 < k}
#{q1 ∈ imO : t21 + r21 < k}

=
∣∣∣∣ ‖ϕ1‖ (ψ|ϕ)
‖ϕ‖ (ψ1|ϕ1)

∣∣∣∣2 , (10)

where q and q1 within brace brackets are any events isomorphic to the given
ones respectively. (10) states that the frequency of occurrence of an eigenstate
in quantum events depends on the square of the modulus of its scalar product
with a given evolving state — in agreement with the rule of standard quantum
theory. Using (8) we obtain |c(ξ)/c(ξ1)|2; just this ratio of frequencies (termed
further relative probability) is manifested in experiments.
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In the theory we do not require the completeness of the set of eigenvectors,
since the quantum law of large numbers describes relative probabilities. How-
ever, using them we are able to get absolute ones (or probability densities) as
well whenever the latter exist. Suppose first that the spectrum of A is discrete,
that is, we have eigenvectors ξ1, ξ2,. . . Denote the absolute probability of ξn by
pn, and the relative probabilities of ξn to ξ1 (i.e., pn/p1) by rn. Then we must
have

p1(r1 + r2 + . . .) = 1,

whence we calculate p1, and later pn. It has to be replaced by, e.g.,

p1(
∫
r(ξ)dξ + r1 + r2 + . . .) = 1,

if the spectrum is, in part, continuous. Here r(ξ) is the relative probability of ξ(ξ)
to ξ1 equal to p(ξ)/p1, where p(ξ) is the probability density corresponding to ξ.
Finally, if there are no discrete eigenvectors, the relative probability obtained
from (ii) is the quotient of some probability densities.

Note that even if the spectrum is continuous, the set of all possible measure-
ments has to be countable. Precisely speaking, from the Planck-Einstein law it
follows that the set of all quantum events experienced by an observer is numer-
able. This means that most eigenvectors will never be obtained. However, the
quantum law of large numbers will still work. This is ensured by the following

6.1. Corollary. (Homogeneity and isotropy principle.) Given a represen-
tative set U and quantum event q, the observer sees also a quantum event q ′

situated within U and isomorphic with q. �

This result corresponds to the cosmological principle, since it yields that the
occurrence of quantum events distinguishes no direction or sufficiently large
connected region. In the present approach Corollary 6.1. guarantees, among
other things, that if ϕ is registered in a measurement (i.e., ϕ appears in a
quantum event), then ϕ (transformed, in general, by an isomorphism) will occur
infinitely many times. The eigenvalues of such eigenvectors ϕ form a numerable
dense subset of the set of all eigenvalues (unless there is an eigenvalue ξ such that
measurements performed with a suitable accuracy never give ξ). One may, of
course, imagine that realized eigenvalues are rational, but this is not necessary.

(ii) allows one to define the test cover in many various ways. For example,
if the experimenter works in his laboratory with a radius ε, then his relative
probabilities are well represented by

lim
k→∞

#{q ∈ imO : 0 ≤ t < k, |r| ≤ ε}
#{q1 ∈ imO : 0 ≤ t1 < k, |r| ≤ ε}

.

Note that the word ‘connected’ is essential in the definition of a representative
set; this follows from the Planck-Einstein law. Simply speaking, otherwise one
could choose measurements with a fixed eigenstate. Let us add also that the
quantum law of large numbers could be postulated solely for open representative
sets because its more general variant would then follow from (ii).

The mapping β (termed the Born function) does not appear in (10), but it
is starring in the second most important case following from the quantum law
of large numbers, i.e.,

6.2. Corollary. (Born law.) If q and q∼ are quantum events having
isomorphic state spaces and operators as well as eigenstates transformed by the
isomorphism, then the following limit exists, and

lim
k→∞

#{q ∈ imO : |t|+ |r| < k}
#{q∼ ∈ imO : |t∼|+ |r∼| < k}

=
∣∣∣∣ β(ψ) (ψ|ϕ)
β(ψ∼) (ψ∼|ϕ)

∣∣∣∣2 ,
12



where q and q∼ within brace brackets are any events isomorphic to the given
ones respectively, and both the eigenstates are denoted by the same symbol. �

Roughly speaking, the Born law yields the relative frequency of pure states if
an eigenstate is fixed. For instance, Φ being a space of wavefunctions with n

spatial arguments, we may define β on Φ×Ω in such a way that

β(Ψt, η(x1, . . . , xn)et/h̄) =
‖Ψ(t, x1, . . . , xn)‖

‖Ψ‖
, (11)

since by virtue of (4) η(x1, . . . , xn)et/h̄ uniquely determines t and the arguments
of η. By (8) we have

|(ψ|ϕ)| = |(ψ∼|ϕ)| .

Thereby we obtain that the relative probability of recording the eigenvalue
of ϕ at detectors located within small neighborhoods of (t,x1),. . . ,(t,xn) and
(t∼, x∼1 ), . . . , (t∼, x∼n ) is equal to(

‖Ψ(t, x1, . . . , xn)‖
‖Ψ(t∼, x∼1 , . . . , x∼n )‖

)2

. (12)

As it does not depend on ϕ, (12) is the relative probability of the wavefunc-
tion reduction. It is exactly equivalent to the fact discovered by Born(36) and
expressed in the terms of the probability density. This indicates that in experi-
ments some quantum events can be treated as manifestations of particles.

In the theory there are no particles with classical trajectories. We assume
merely that the experimenter may regard a set of quantum events as a ‘particle’
(if the set is ordered in time and consists of entangled events separated by tem-
poral intervals) or ‘beam of particles’. Even a trajectory in the track chamber
is formed from a finite number of entangled events. (If they are partially en-
tangled, then the ‘particle’ looks as if it were a superposition of two or more
eigenstates.) And the lack of particles in the intuitive sense means that the
theory is not ‘statistical’: it gives maximal available information.

If two experimenters examine two analogous systems (e.g., elementary parti-
cles of the same sort) in their labs, then state spaces used by them are different
(even if they write down the same) albeit isomorphic. This clarifies why they
can measure incompatible observables. Similarly, if there is a beam of particles
in the same pure state, and after the collapse we obtain a mixed state consisting
of distinct eigenstates with their distribution fulfilling the quantum law of large
numbers, then in reality the pure state was identical only with the accuracy up
to an isomorphism. (For if the particles were entangled, by virtue of the third
law of (i) the obtained eigenstate would have to be the same.) It is also possible
to perform simultaneous measurements of noncommuting observables of such a
system provided they involve different particles.

(12) shows that although the framework is based upon (2), traditional equa-
tions cannot be eliminated. They are needed (and hence included in the theory)
in all those cases where the Born function is essential. On the other hand, it
can be also defined as follows

β(Ψt, η(x1, . . . , xn)et/h̄) = ‖Ψ‖−1
. (13)

Here the Born law does not increase our knowledge of the real world: we get 1
instead of (12). Note, nevertheless, that due to β the norms of ψ and ψ1 could
be omitted in (9). If (13) holds for all quantum events with an operator, then
their time and location are irrelevant; their frequencies of occurrence depend
solely on states. Such quantum events form, of course, the vacuum level.

It is also possible that β will be defined in a fashion intermediate between
(11) and (13). (ii) does not say how to express β in specific cases; this depends,
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in general, on experience. Note that if (13) were always true, no macroscopic
bodies (treated in the model as collections of quantum events) could be formed.

The quantum law of large numbers in the current form finds application in
the situation when earlier entangled events do not exist or are not known or are
incompatible. The third law of (i) shows that (ii) requires completion, but the
technical issue will not be considered here.

7. FEYNMAN’S SOLE MYSTERY

Our formalism can clarify the basic mystery of quantum mechanics, pointed to
by Feynman(37), i.e., the two-slit experiment. As there are no particles with
classical trajectories, the question ‘Which slit has the electron gone through?’
makes no sense. If both the slits are open, then within them there are sim-
ply no quantum events entangled with the ones on the screen unless they are
incompatible. Therefore, all eigenstates are available with the probabilities pro-
portional to their scalar products, that is, fringes are visible. On the other hand,
if at least one of the slits is illuminated, then within them there occur quantum
events compatible with the events on the screen; in both the cases the position of
electrons is measured. This causes that the third law of (i) begins to act, and a
Gaussian pattern appears. An analogous argument involves, e.g., the fullerene
molecules(38). It is important that all the quantum events of the description
exist even if there are no experimenters; the phenomenon looks identical under
any circumstances.

Consider, in addition, the delayed-choice double slit experiment presented
by Wheeler(39, 26, p. 111). Here light waves emerging from the slits are focused
by two lenses into intersecting plane wave trains. There are also two photo-
graphic plates: a near one situated in the region where the two wave trains
interpenetrate, and a far one (it may be replaced by photon counters) where
they are already well separated. The near plate can be interposed or not. If it
is absent, then Gaussian patterns appear on the far one. Otherwise, fringes are
visible on the near plate. Furthermore, the decision — to push it or not — is
made only after the pulse has passed the slits (the source is able to emit single
photons). Thus, if someone believes that the interference pattern implies, in
some sense, ‘the passage of the particle through both the slits’, then he obtains
a contradiction: the past must be changed.

In our model quantum events within the slits and lenses are the same irre-
spective whether the near plate is present. On the other hand, quantum events
on the plates differ considerably. In fact, the events on the near one are de-
scribed by the equation of Young’s interference, while those on the far one —
by that of Fraunhofer diffraction. Although we cannot enter into details here, it
is easily seen that there are degrees of freedom (the event locations) enabling one
to depict the situation without altering the past. Note that the events nearer
to the slits exist only if the plate is advanced, but the decision about this can
be made even by a computer.

8. EXTENDED STATE SUPERPOSITIONS

We have shown that to every state function one can assign a family of quantum
world-lines describing the same quantum behavior. In the section we demon-
strate that our method is even more general; there are state superpositions
which cannot be represented by any state functions but can — by using virtual
paths. We extend the definition of a quantum system: we shall mean by it any
family of quantum world-lines reducing to suitable eigenstates with required
probabilities at desired four-dimensional events.

Let us start with an elementary operation. Suppose that we wish to represent
a quantum system corresponding to a state function Ψ of (6), but being able to
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collapse merely at an instant u. Define a time-dependent operator Au on Φ×Ω
by

Au(t)(ϕ, ω) = ((1 + (t− u)i)Aϕ, iω).

By Ψu we denote the family of all quantum world-lines

(p,Φ × Ω, Au(., x1, . . . , xn), ψ),

such that (x1,. . . ,xn)∈X , for some j satisfying 1≤ j≤ k we have

p = xj ,

and

ψ(t) = (
∫
c(ξ)efξ(t)Ψ(ξ)dξ +

∑
l

clefξl
(t)Ψl, η(x1, . . . , xn)et/h̄),

where

fξ(t) = −it(1− ui +
ti
2

)
ξ

h̄
, (14)

and ξ or ξl is the eigenvalue of A(u,x1,. . . ,xn) corresponding to Ψ(ξ) or Ψl. As
A is Hermitian, the paths of Ψu can collapse solely at u.

Applying the construction, we are in a position to describe more interesting
processes. The union of Ψu for u belonging to a set T will be denoted by ΨT .
If

T = {ip : i = 0,±1, . . .},

then ΨT represents a system being able to reduce merely at the end of a period
p. In the context of the quantum Big Bang (considered for the first time in
Refs. 40, 41) one can mention Ψ{u≥s} — a system with the earliest reduction
time s. The properties of ΨR are similar to those of Ψ•, but the former can be
utilized even if the eigenvalue of A(t,x1,. . . ,xn) varies with time.

Now suppose that instead of (6) we have

Ψ{t} =
∫
c(ξ)(t)Ψ(ξ)dξ + c1(t)Ψ1 + c2(t)Ψ2 + . . . ,

i.e., the coefficients c depend on time. Such a system can be represented by
the union of Ψt

{t} for all real t. Our approach works even if the functions c do
not satisfy any continuity conditions with respect to time (e.g., they may take
merely finitely many values). Let us note that quantum world-lines are perfectly
smooth, and (2) is still fulfilled.

Suppose, finally, that we have an infinite sequence {Ψj} of state eigenfunc-
tions of A, and — {cj} of nonzero complex numbers such that the sum

c1Ψ1 + c2Ψ2 + . . . ,

does not exist (that is, there is no state function describing the system), although

c1c
∗
1 + c2c

∗
2 + . . . = 1.

We wish to describe a system collapsing to Ψj with the probability cjc∗j . To this
end, denote by Ψ(u,r) the family defined similarly to Ψu, but with (14) replaced
by

fj(t) = −it(1− ui +
ti
2

+ r − x2
1 − . . .− x2

k)
ξj
h̄
.

From (2) it follows that the family is empty unless r is nonnegative. In this case
their paths can reduce solely at the time u, and the additional condition

15



r = x2
1 + . . .+ x2

k

has to be satisfied. (Hence Ψ(u,0) collapses at most at a single four-dimensional
event.) Let us put

Ψ(j) = c1Ψ1 + . . .+ cjΨj .

The union ⋃
|u|<j,r<j

Ψ(u,r)
(j)

is the required system. Indeed, from the Planck-Einstein law it follows that if
we have an infinite set of quantum events controlled by the paths of the union,
then for every j almost all the events have been reduced by paths belonging
to one of the sets ΨR

(j), ΨR
(j+1), . . . This implies that the relative frequencies of

eigenstates equal cjc∗j/clc
∗
l .

Why may we form such extended superpositions of states? This is possible
on the basis of the next axiom. Two paths (p0,Φ,A0,ψ0) and (p1,Φ,A1,ψ1)
are said to be associated if every eigenvector ϕ of Ai(t) corresponding to an
eigenvalue with a nonzero imaginary portion is an eigenvector of A1−i(t) with
the same eigenvalue, and

(ϕ|ψ0(t)) = (ϕ|ψ1(t)),

for every t. For instance, two paths with Hermitian operators are associated.
Using the definition we can postulate

(iii) (Extended superposition principle.)

If O sees an (infinite, maybe, or even uncountable) family {(p,Φ,Ak,ψk)}
of mutually associated quantum world-lines, then every path (p,Φ,A,ψ)
associated with them and such that A(t) and ψ(t) can be obtained from
{Ak(t)} and {ψk(t)} using an effective algorithm is observed by O as well.

For example, if O sees (p,Φ,A,ψ1) and (p,Φ,A,ψ2) for a Hermitian A, then O

observes also (p,Φ,A,c1ψ1+c2ψ2) whatever complex numbers c1 and c2 are.
Let us compare (iii) with the standard superposition principle. The latter

says that if there are state eigenfunctions giving uniquely determined results,
then any their combinations, finite and infinite whenever convergent, are ad-
missible as well. The number of those combinations is infinite, but only finitely
many of them have been ever utilized. Similarly, in the present theory the num-
ber of extended superpositions is enormous. First of all, the existence of Ψ•

for a state eigenfunction Ψ has to be assumed, e.g., by virtue of experience. In
this case Ψ• is determined, i.e., it collapses only to Ψ. Having the state space
Φ×Ω (or an isomorphic one) and using (iii), one can build Ψ• (or Ψ•• corre-
spondingly) for Ψ satisfying (6) as well as obtain all the constructions of the
section. Note that vectors of Ω remain unchanged, which explains the usage of
associated paths in (iii). And the phrase ‘effective algorithm’ in (iii) guarantees
that quantum effects will occur regardless of what experimental configuration
has been arranged.

To recapitulate, we have demonstrated that all state superpositions available
in conventional quantum mechanics can be recovered in the theory. Further-
more, there are additional superpositions that will be able to be used to describe,
e.g., the quantum Big Bang.
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9. EXPERIMENTAL RESULTS

Let us recall the interpretive rule of conventional quantum mechanics(42, p. 35):
”If the dynamical system is in an eigenstate of a real dynamical variable ξ, be-
longing to the eigenvalue ξ′, then a measurement of ξ will certainly give as result
the number ξ′.” Unfortunately, this cannot be true, even on average, because it
is known that every real apparatus has a minimal systematic error (for, e.g., the
pointer has small deformations). That is why it never gives eigenvalues required
by the founding fathers of quantum physics. One could maintain that the ad-
missible deviation (that has been never defined) depends on the experimenter.
Suppose, therefore, that the pointer is observed by two experimenters, not com-
municating each other, and only the younger one is able to perceive a difference.
Does the reduction occur solely for the short-sighted one? And if they perform
experiments separately, then the question arises why the sharp-witted one is to
be punished.

In our world picture the solution is easy: both the researchers observe the
same quantum event, and merely some intermediate quantum events connected
with light-sensitive chemicals in the rods and cones of their retinas are distinct.
We accept that even completely crazy apparatuses are able to cause the wave-
function reduction, although perfect detectors should, in fact, give eigenvalues.
And if the averaged deviation is tiny or precisely defined, the experimenter
can normally work. The assessment may be subjective; as (1) does not con-
tain eigenvalues (including eigenvalues in (1) would be irrational even from the
purely mathematical viewpoint), QET requires nothing in this matter.

10. CATS AND OTHER PARADOXES

Consider the following question: Can we present, using a suitable state space,
each physical process (even the whole universe) as the result of the reduction
of a state function? This problem is far from trivial. In our approach quan-
tum world-lines are given, but we cannot predict exactly what they are. The
number of particles, the amount of energy, and distances in space or space-time
have no meaning here; there can be quantum systems with a large number of
particles(38, 43).

Our experience seems to indicate that there exist mixed systems, that is,
objects still dependent on quantum world-lines but having distinct state spaces.
A popular example is provided by the state of a cat(44). We think (without
trying) that the examination whether the cat is dead or alive has to include a
lot of paths which are not entangled. Thereby the cat cannot be described via
a single state space. This is all the more impossible in the case of a system in
which, e.g., a nuclear decay causes that poison kills the cat. Therefore, there
are no quantum events whose state spaces contain the superpositions of such
vectors as |no decay〉 |live cat〉 and |decay〉 |dead cat〉 . Although such spaces can
be easily created by a theorist, they cannot be assigned to objects existing in
reality. This clarifies all paradoxes involving cats and similar things.

In our opinion, the success of quantum physics owes to the fact that paths
with suitable state spaces (with the accuracy up to an isomorphism) really exist,
and not to the ingenuity of a theorist. If he assigns a state space to such objects
as liquid helium, superconductor, or crust of a neutron star, then he may get
correct results. It means that Nature has created paths with an isomorphic
Hilbert space for those objects. But if he tries to do the same for cats (humans,
tables and chairs, and even black marks on photographs), then he should not be
surprised obtaining nonsenses. This evidently signifies that the corresponding
quantum world-lines do not exist in Nature. And some mixed systems form the
so-called macroscopic world.

It is worthwhile to remark that our formalism allows us to consider the
factual situation of the cat (or other mixed objects). Suppose that the nuclear
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decay is represented by a quantum event. It is the cause of a number of events
forming a mixed measurement (i.e., a family of events containing at least two
ones having distinct state spaces) which looks like opening the lethal ampoule.
The quantum events connected with the spilt poison are, in turn, the cause of
events that do not occur in the organism of any living cat. In consequence,
Schrödinger’s cat has to die. The process is independent of whether the box
containing the cat and apparatus has been previously shut or not.

A much more dramatic version of the paradox was devised by Rae(7): ”It
is well known that the evolution of living organisms results from mutation in
the DNA of the genetic material of members of a species, which in turn causes
a change in the characteristics of the offspring. It is also a fact that such
mutations can be caused by the passage of high-energy cosmic ray particles.
But these cosmic rays are clearly subject to the laws of quantum physics and
each cosmic ray particle has a range of possible paths to follow, only some of
which give rise to the mutation. The mutation therefore fulfils the role of a
measuring event, similar to the photon being detected by the polarizer. But
if we consider the biological cell as a quantum system, we cannot say whether
the mutation has occurred or not until we make a measurement on it. And
if we go so far as to treat the whole planet as a quantum system, we cannot
say that the species has evolved or not until we measure this. The world must
retain the potential to behave both as if the species had evolved and as if it had
not, in case a situation arises which brings these two possibilities together to
reconstruct the original state in the same way as the 45◦ state is reconstructed
by the reversed polarizer!” The solution is similar; the polarization of light can
be depicted by a wavefunction, but the development of life (apart from some
elementary biochemical reactions) cannot because in the latter case suitable
entangled quantum world-lines, fortunately, do not exist. The former process
is, therefore, reversible, while the latter — not.

Let us note, in addition, that Dirac would be amused. He could ask rhetor-
ically where eigenvalues are in this ‘measurement’. If we still remember that
the founding fathers of quantum mechanics established it merely to describe
systematically the response of the apparatus in the perfect physical laboratory,
we will not obtain any anomalies. But, of course, we understand physicists’
dream of a complete theory depicting whole Nature. We believe that it will be
able to be accomplished, with better and better approximation, on the ground
of the present interpretation of the quantum world.

11. OBJECTIVE REALITY

Trying to use conventional quantum mechanics outside its original environment,
Bell(26, p. 117) asked: ”Was the world wave function waiting to jump for thou-
sands of millions of years until a single-celled living creature appeared? Or did
it have to wait a little longer for some more highly qualified measurer — with a
Ph.D.?” Let us add that, analogously, the Rae paradox implies the necessity of
the existence of an intelligent creature living outside our planet, etc. As QET
gives no special rôle to the conscious mind, we can provide an easy answer to
those and similar questions. The consideration of the previous section may be
crowned by the following example. Suppose that all experimenters on the earth
suddenly vanish. Does it mean that Nature is obliged to vanish as well? No, this
would be ridiculous. First of all, virtual paths will normally keep on existing.
On the other hand, some quantum events can, in fact, vanish, but according to
(ii) on a scale of entire Nature it will not matter.

In this context it is worthwhile to mention some other ideas of objective wave-
function collapse and to discuss basic differences between our and those meth-
ods. The proposal of Ghirardi, Rimini and Weber(23, 26, p. 202) was formulated
for merely nonrelativistic wave mechanics. In their approach, the Schrödinger
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wavefunction had to be transformed into a modified form, while QET can adopt
every wavefunction whenever it describes Nature in a correct way. (Precisely
speaking, any state function will be accepted, but if you introduce an incorrect
one, then this portion of the theory will be false. This will mean that paths
corresponding to the state function do not exist in reality.) The GRW theory
required two new, rather elusive and ad hoc, constants (their existence has been
never suggested in another way) of Nature, while we have taken (9) directly
from quantum mechanics; it has been already experimentally verified. One
aim of the GRW theory was to eliminate embarrassing macroscopic ambiguity
in conventional quantum physics, but Section 10. showed that the paradox of
Schrödinger’s cat can be unraveled in another way.

As (ii) deals solely with relative frequencies, in contradistinction to GRW we
need not consider absolute probabilities of the wavefunction reduction. The fre-
quencies of occurrence of states must satisfy the quantum law of large numbers
with time and/or distance tending to infinity.

As was demonstrated by Nelson(24, 25) about forty years ago, the derivation
of the Schrödinger equation from Newtonian mechanics is possible if one assumes
that the particle under consideration is subject to a modified Brownian motion
with a suitable diffusion constant. Nelson’s idea has been recently revitalized
and generalized (to systems of many particles) by Fritsche and Haugk(2). They
have justified their approach as follows: ”The hypothesis of vacuum fluctuations
allows one to view the ‘real world’ in familiar terms of ‘naive realism’. In an
electron two-slit experiment, for example, this view suggests that each electron
follows an irregular trajectory from the tip of the cathode to the fluorescent
screen or some other position sensitive detector where it is captured by some
atom. The latter process is described by the time-dependent Schrödinger equa-
tion whose Hamiltonian contains all the information on the interaction of the
particles involved. If the electron is captured by an atom of a fluorescent screen
the process is followed then by the ejection of a photon. One could position
a digital camera behind that screen so that the photon, if it runs through the
camera lens, could finally be monitored as a scintillation flash at a particular
point of the camera display. In so doing, one could identify the position of
the atom that captured the electron. However, the presence or absence of the
camera behind the screen has no influence at all on the capturing process. It
is hence absolutely unclear why that process should play a particular role as a
measurement different from other electron capture processes which occur con-
stantly in all kinds of situations and are governed by the same time-dependent
Schrödinger equation. Heisenberg’s statement(1) ‘. . . the idea of an objective
real world whose smallest parts exist objectively in the same sense as stones or
trees exist, independently of whether or not we observe them. . . is impossible’
and that ‘We can no longer speak of the behavior of the particle independently
of the process of observation’(45) seems absurd in the light of the above con-
siderations. But it reflects exactly the Copenhagen interpretation of quantum
mechanics the spirit of which is still very much alive in practically all modern
textbooks.”

It should be emphasized that QET is closer rather to the latter Heisenberg’s
statement and the Copenhagen interpretation than to the stochastic quantiza-
tion. In our opinion, the sole error of the founding fathers was that they did
not try to introduce and axiomatize the concept of a quantum event, for this
would settle everything. In the example of the quotation there are at least
two sorts of quantum events connected respectively with the capturing process
and scintillation flashes. It can be said that the former ones exist objectively
(similarly to some trees), whereas the latter are forced by a human who set
the camera (correspondingly plants an apple tree). Both sorts of events have
the same form of mathematical representation permitting, in particular, to de-
scribe the results of measurements. Our method is very general inasmuch as it

19



encompasses all operators at once, whatever they may be, at present or in fu-
ture. We do not assume the existence of any trajectory, smooth(17–22) or merely
continuous(2, 24, 25, 10–12), because no observation can confirm it. We agree,
therefore, entirely with Zeilinger(46): ”. . . the very austerity of the Copenhagen
interpretation, unsurpassed by that of any other interpretation of quantum me-
chanics, speaks very much in its favor. Indeed, its basic attitude toward the
fundamental role of observation represents a major intellectual step forward
over naive classical realism. In classical physics, observation is often regarded
as a secondary concept, with the elements of the real world being primary. Yet
it is obvious that any statement about nature has to be based on observation.
What could then be more natural than a theory in which observation plays
a more fundamental role than in a classical worldview?” The last sentence is
exactly about QET, the objective theory of measurement.

12. CONCLUSION

In the paper we have presented a portion of a theory termed ‘quantum event
theory’ (QET). Some of its properties are as follows:

� QET depicts phenomena occurring in whole Nature, and not only — as
does conventional quantum physics — in the perfect physical laboratory.
QET does not require the existence of any conscious observer.

� QET encompasses all quantum systems (connected with the eigenvalues
of an operator in a way). QET allows one to treat wavefunctions and even
state functions as physically existing objects.

� QET is as rigorous as mathematical theories. The concepts introduced
at the most fundamental level (quantum events forming the real world
and virtual paths alias quantum world-lines serving to construct state
functions) are not ambiguous. As a consequence, the quantum collapse
and entanglement relations are precisely defined.

� There is formulated a ‘quantum law of large numbers’ clarifying the nature
of quantum probabilities. This is possible owing to the axiom termed ‘the
Planck-Einstein law’ (in honor of the two German scholars) based on the
earliest ideas of quantum theory.

� The quantum law of large numbers implies a ‘quantum homogeneity and
isotropy principle’.

� QET contains a mechanism called ‘the Born function’ (also in his honor)
enabling one to treat some quantum events as the manifestations of par-
ticles.

� The extended superposition principle permits one to recover all state su-
perpositions available in conventional quantum physics and gives addi-
tional possibilities.

These features cause that QET can be expected to be useful in the researches
of quantum cosmology, especially if it is shown to be Lorentz invariant (which
is, in fact, true).

It should be pointed out that QET in the concise version of this paper makes
no predictions verifiable in physical laboratories, which differ from those of con-
ventional quantum mechanics. Although everyone has encountered quantum
events, the physical existence of virtual paths (similarly to that of wavefunc-
tions) is not directly testable. However, QET is very flexible; having quantum
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events and world-lines one can select axioms describing various practical situa-
tions. It may happen that on the ground of standard theory some experiments
will not be able to be depicted in a self-consistent way, while using QET this
will be workable.

Lodz, Poland, November 2005
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